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Abstract. The examined algorithm for global optimization of the multiextremal non-differentiable
function is based on the following idea: the problem of determination of the global minimum point of
the function f (x) on the set �(f (x) has a finite number of local minima in this domain) is reduced
to the problem of finding all local minima and their attraction spheres with a consequent choice of
the global minimum point among them. This reduction is made by application of the optimal set
partitioning method. The proposed algorithm is evaluated on a set of well-known one-dimensional,
two-dimensional and three-dimensional test functions. Recommendations for choosing the algorithm
parameters are given.
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1. Introduction

Because of the variety of practical global optimization problems, it is expedient
to apply specific methods of global search that most completely take into account
characteristics of a particular class of problems. This fact follows from the numer-
ous publications, for example Batishev (1975), Dem’yanov and Vasil’ev (1981),
Strongin (1978), Suharev (1981, 1989), Ziglyavskiy (1985), Ziglyavskiy and Zil-
inskas (1991), Zilinskas (1986), Zilinskas and Shaltyanis (1989), reflecting the
modern state of theory and methodology of global optimization.

Due to such variety, there is no uniform standard classification of global meth-
ods. Each of known classifications has its advantages and its drawbacks. However,
in each classification that claims its own completeness, the approaches such as
“multistart” Ziglyavskiy and Zilinskas (1991) or such as covering methods Suharev
(1989) are discussed. These approaches are reduced to the estimation of the attrac-
tion spheres of local minima and to the choice of initial points for consecutive or
parallel local descent to the local minimum points with the subsequent choice of the
global minimum point among them. Let us examine these approaches explicitly.

Let us formulate the global optimization problem following Strongin (1978).
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Let f (x) be a real, multiextremal, continuous function defined on the domain
� in an n-dimensional Euclidean space En, where the number of local minima is
finite and does not exceed N .

Let us consider the problem of searching for the point x∗ ∈ � (assumed to
exist) such that

f (x∗) = min
x∈� f (x). (1)

If such a point x∗ exists in domain � and in a certain vicinity U(x∗)

f (x∗) � f (x), x ∈ � ∩ U(x∗),

then function f (x) is called unimodal in U(x∗).
If there are several points τ ∗

i , 1 � i � N , in the domain of definition � and
each of them has its own vicinity U(τ ∗

i ) such that

f (τ ∗
i ) � f (x), x ∈ � ∩ U(τ ∗

i ), (2)

then function f (x) is called multiextremal.
The points from (2) are called local minimum points, and the point τ ∗ is a global

minimum.
Let f (x) be the unimodal function on a certain subset �i , 1 � i � N , of

the domain � (the local minimum point of the function f (x) on the subset �i is
denoted by τ ∗

i ), and let

N⋃
i=1

�i = �.

Then, by applying the known local descent methods, for an arbitrary initial point
τ 0
i ∈ �i , we can obtain the corresponding local minimum point τ ∗

i ∈ �i . It is said
that the subset �i is an attraction sphere of the local minimum τ ∗

i . In other words,
the local minimum attraction sphere is a sphere in which the steepest descent
starting from any point of this sphere leads to this local minimum.

Thus, the global optimization problem (1) is solved once the domain of defin-
ition � is partitioned into attraction spheres �i of the local minima τ ∗

i , 1 � i �
N .

However, as many authors indicate, for example Batishev (1975), Strongin
(1978), Ziglyavskiy and Zilinskas (1991), Zilinskas (1986), the evaluation for the
partitioning the domain of definition � into attraction spheres �i , 1 � i � N is a
complex problem.

Besides, in the general case, obtaining the evaluation for the number N of at-
traction spheres is a hard problem. Thus, the development of the objective function
models and methods that include the number of local minima with characteristics
of their attraction spheres is still an issue, Ziglyavskiy and Zilinskas (1991).
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In this paper we examine the global optimization algorithm based on apply-
ing the optimal set partitioning method from Kiseleva (1989), Kiseleva and Shor
(1994) that overcomes some of the described difficulties and problems.

More than 120 publications by E.M. Kiseleva and her research laboratory are
devoted to the presentation the optimal set partitioning method and examination
the efficiency of the algorithms that realized this method as well as its different
modifications and generalizations for various classes of problems. All of these
problems are reduced to the problem of optimal set partitioning.

Some of these publications are given in references Kiseleva (1985, 1989, 1991,
1992), Kiseleva and Shor (1991, 1994), Kiseleva and Mironenko (1996). In the
works of Kiseleva and her co-authors the possibility of application of the optimal
set partitioning method is shown for: (a) solving the oneproduct or multiproduct
infinite-dimensional transport problems and allocation problems as well as the
generalized Neyman-Pearson problem of testing the statistical hypotheses; (b) the
problems of getting the Dirihle-Voronov diagrams; (c) the services sector territorial
planning problems; (d) the problems of determination of the nodes in the optimal
quadrature formulae for numerical integration, Suharev (1989); (e) the problems
of optimal covering the set by spheres of equal radius, Suharev (1989); (f) solving
the problems of a choice of the group decision in sociology etc.

The present work is the continuation of the E.M. Kiseleva, N.Z. Shor and their
students works cycle on examination of the possibilities of the optimal set parti-
tioning methods application and also N.Z. Shor’s r-algorithm for various classes of
theoretical and practical optimization problems.

This method not only allows to find all local minimum attraction spheres but
also it simultaneously yields the coordinates of all local minima and the global
minimum among them. Besides, in the case when the true number Ntrue of the
local minima is not known in advance, it is enough to set only an expected number
of local minima Nexp. The true number of local minima Ntrue is adjusted by the
algorithm.

At the same time, the class of the minimized functions considered by the method
is broad. It is a class of non-differentiable functions that allow application of the
local search non-smooth optimization method – N.Z. Shor‘s r-algorithm, Shor
(1985), i.e., a class of almost differentiable functions.

Thus, the examined algorithm from Kiseleva (1985), Kiseleva and Mironenko
(1996) for global optimization of the multiextremal, non-differentiable function
having at most N local minima is based on the following idea. We transform the
problem of searching for the global minimum of the function f (x) on the set
� into the problem of determination of the optimal partitioning �∗

1, . . . , �
∗
N of

the admissible domain � into N local minima τ ∗
1 , . . . , τ

∗
N attraction spheres and

the coordinates of these sphere centers, simultaneously. These center coordinates
correspond to the local minimum points of the original function f (x) on �. As the
optimality of the domain � partitioning into local minimum attraction spheres we
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take the minimum of the error, which is admitted by referring the point x of the one
local minimum attraction sphere to the attraction sphere of another local minimum.

One of the versions of the local search method of the generalized gradient des-
cent with the space expansion in the direction of the difference of two sequential
generalized gradient vectors (so-called N.Z. Shor’s r-algorithm) Shor (1985) is
used for solving the problem of finite-dimensional non-differentiable optimiza-
tion, which consists of searching for the optimal local minimum coordinates. The
proposed algorithm is evaluated on a set of well-known test problems for one-
dimensional, two-dimensional and three-dimensional cases. Recommendations for
choosing the algorithm parameters are given.

Let us consider the continuous problem of optimal partitioning of the set� from
an n-dimensional Euclidean space En into {�1, . . . , �N } subsets with determina-
tion of the coordinates of these subset centers, Kiseleva (1989), Kiseleva and Shor
(1994).

Let � be a bounded Lebesgue-measurable set in En. It is required to find
such a partition of the set � into N Lebesgue-measurable subsets �∗

1, . . . , �
∗
N

(some of them may be empty) and such coordinates τ ∗
1 , . . . , τ

∗
N , (unknown in

advance) of�∗
1, . . . , �

∗
N subset centers, that represent the solution of the following

optimization problem.

PROBLEM A. (see Figure 1).

min
{�1,... ,�N },{τ1,... ,τN }

N∑
i=1�i

∫
c(x, τi ) dx

s.t.
N⋃
i=1

�i = �,

mes(�i
⋂
�j) = 0, i �= j, i, j = 1, 2, . . . , N,

where mes(·) – is the Lebesgue measure.
Here and henceforth all integrals are understood to be Lebesgue integrals. We

shall assume that the set of boundary points �i , 1 � i � N , is of measure zero.
Functions c(x, τi ) are real bounded measurable on x with any fixed τi =

(τ
(1)
i , . . . , τ

(n)
i ) from �, functions defined on �×�.

2. The Reduction of the Global Optimization Problem to the Problem of
Optimal Set Partitioning

Let us consider the following problem. It is required to find a point x∗ = (x∗(1),
. . . , x∗(n)), such that the function f (x) achieves its minimal value on � ⊂ En, i.e.

f (x∗) = min
x∈� f (x), (3)
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Figure 1. The optimal partitioning of the set into three subsets.

where f (x) is non-differentiable function on � ⊂ En.
As the non-differentiable functions f (x), according to Dem’yanov and Vasil’ev

(1981), Mihalevich, Trubin and Shor (1986), Shor (1985), Shor (1998), we take the
class of almost differentiable functions on � ⊂ En.

The almost differentiable function in Mihalevich, Trubin and Shor (1986), Shor
(1985), Shor (1998) is understood to be a continuous function f (x) defined on En
such that it is Lipschitz-locally, see Dem’yanov and Vasil’ev (1981), and continuously-
differentiable on the set, where the gradient vector exists.

Let us assume that function f (x) is unimodal on a certain subset�i , 1 � i � N ,
of the domain � (the point of the local minimum of the function f (x) on � is
denoted by τ ∗

i ), and let

N⋃
i=1

�i = �,

�i ∩�j = 0, i �= j, i, j = 1, 2, . . . , N. (4)

We reduce the problem (3) of searching for the global minimum of the function
f (x) on � to the optimal set partitioning Problem A from section 1.

For the reduction of the problem (3) to the Problem A it is necessary to fulfill
the following conditions:

(a) the optimal partitioning �∗
1, . . . , �

∗
N of the set � of the problem A must be

the partitioning of the admissible domain of definition � of the function f (x) into
its local minima attraction spheres;

(b) the optimal coordinates of the centers τ ∗
1 , . . . , τ

∗
N of the subsets�∗

1, . . . , �
∗
N ,

accordingly, must coincide with the local minima coordinates of the function f (x)
on �.

For simultaneous fulfillment of both of the described above demands the object
in Problem A must be the minimization of the functional of the total losses of
incorrect partitioning of the set� into attraction spheres �∗

1, . . . , �
∗
N and incorrect



214 E. KISELEVA AND T. STEPANCHUK

Figure 2. Plot of the minimized function f9(x).

determination of the local minima τ ∗
1 , . . . , τ

∗
N at each of these spheres, that is the

functional
N∑
i=1

∫
�i

c(x, τi ) dx,

where the functions c(x, τi ), i = 1, 2, . . . , N , must penalize the referral of a point
x to the incorrect attraction sphere.

Let us define the penalty function c(x, τi ) as follows:

c(x, τi ) = f (τi)+ S
k∑
j=1

ϕj(u), (5)

where

ϕj (u) =
{

0, u � 0

1, u > 0
, u = f

(
x + τi − x

k
j

)
− f

(
x + τi − x

k
(j − 1)

)
,

S is a sufficiently large positive number; k is a natural number, which indexes the
segment [x, τi ].

As seen from Figure 2 if the point x belongs to the ith local minimum attraction
sphere then ϕj(u) = 0. If the point x belongs to (i+ 1)st local minimum attraction
sphere, but it was referred to the ith local minimum attraction sphere, then u > 0
and ϕj(u) = 1. When the point x is at the larger distance from the point τi under
an incorrect reference then the penalty value

∑k
j=1 ϕj(u) is greater.
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The partitioning of the set � into �0
i−1,�

0
i , �

0
i+1 attraction spheres determined

by the initial approximation of local minimum coordinates τ 0
i−1 = 0.2, τ 0

i = 0.6,
τ 0
i+1 = 0.65 of the function plotted in Figure 2, and the graphs of the penalty

functions c(x, τ 0
i−1), c(x, τ

0
i ), and c(x, τ 0

i+1) are presented in Figure 3b.
Here the typical feature is the unimodality of each of the functions c(x, τ 0

i−1),
c(x, τ 0

i ) and c(x, τ 0
i+1) at the points of the corresponding attraction spheres �0

i−1,

�0
i , �

0
i+1.

The optimal partitioning of a set� into�∗
i−1,�

∗
i , �

∗
i+1 attraction spheres of the

local minima τ ∗
i−1, τ

∗
i , τ

∗
i+1 of the function from Figure 2 is presented in Figure 3a.

It can be seen that the values of function c(x, τ ∗
i ) at the points of the local

minimum τ ∗
i = 0.5 attraction sphere coincides with the value of the function f (x)

at point x = 0.5. Outside this sphere the value of the function c(x, τ ∗
i ) is abruptly

increased (The rate of increase is determined by the parameter S from (5)). The
same conclusion can be made for the functions c(x, τ ∗

i−1), c(x, τ
∗
i+1).

Thus, we transformed the problem (3) into one of searching for the local min-
imum coordinates and their attraction spheres which is reduced to the problem of
optimal partitioning of the set � into subsets �1, . . . , �N with the determination
of the coordinates τ1, . . . , τN of these subset centers:

min{�1,... ,�N },{τ1,... ,τN }

N∑
i=1

∫
�i

c(x, τi ) dx (6)

s.t.
N⋃
i=1

�i = �, (7)

mes(�i ∩�j) = 0, i �= j, i, j = 1, 2, . . . , N, (8)

where the penalty functions c(x, τi ) have the form (5).

3. On the Method of Optimal Partitioning of Set � from En into
{�1, . . . , �N } Subsets with Determination of the Coordinates of the
Subset Centers

Let us describe the method for solving the optimal set partitioning Problem A from
section 1 of this paper.

For each subset �i , we introduce the characteristic function

λi(x) =
{

1, x ∈ �i,
0, x ∈ �\�i, i = 1, 2, . . . , N.
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Figure 3. (a) Plot of the penalty functions of minimizing the function f9(x) at the optimal
solution: Ntrue = 3. (b) Plot of the penalty functions of minimizing the f9(x) at the initial
solution: Nexp . = 3.
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We can rewrite the Problem A as follows:

Problem B.

min
(λ(·),τ )∈�×�N

∫
�

N∑
i=1

c(x, τi )λi(x) dx,

where

� =




λ(x) = (λ1(x), . . . , λN(x)) : λi(x) = 0 ∨ 1
almost everywhere (a.e.) for x ∈ �, i = 1, 2, . . . , N ,

N∑
i=1

λi(x) = 1 a.e. for x ∈ �,


 ,

τ = (τ1, . . . , τN) ∈ �× · · · ×�︸ ︷︷ ︸
N

= �N.

(We recall that (τi = (τ (1)i , . . . , τ (n)i ) – the points of the subset �i , 1 � i � N).
Denote

I (λ(·), τ ) =
N∑
i=1

∫
�

c(x, τi )λi(x) dx.

Evidently,

I (λ∗(·), τ ∗) = inf
(λ,τ )∈�×�N

I (λ(·), τ )) =
= inf
τ∈�N

( inf
λ(·)∈�

I (λ(·), τ )). (9)

At first let us find the optimal solution of the inner problem from (9) with any
fixed τ ∈ �N .

It follows from Kiseleva (1989) that there is at least one simplex point among
the set of points in which the functional I (λ, τ), that is linear over λ(·), attains its
minimal value for the λ(·) on � with any fixed τ ∈ �N and

�1 =



λ(x) = (λ1(x), . . . , λi(x), . . . , λN(x)) :

0 � λi(x) � 1, i = 1, . . . , N,
N∑
i=1

λi(x) = 1


 .

The extreme points of simplex �1 are the characteristic functions of some sub-
sets �i , that form a partitioning of a set � with any fixed τ ∈ �N .

Thus, we can show by analogy with Kiseleva (1989), that the optimal solution
of the inner problem from (9) is attained with any fixed τ ∈ �N for the vector-
valued function λ∗(x) = (λ∗

1(x), . . . , λ
∗
N(x)) : 0 � λi(x) � 1, i = 1, . . . , N , the

ith component of which has the form

λ∗
i (x) =

{
1, if c(x, τ ∗

i ) = min
k=1,... ,N

c(x, τ ∗
k ), then x ∈ �∗

i ,

0, then x �∈ �∗
i .

(10)
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Let us pass to the specific definition of the outer problem from (9). Denote

G(τ) = min
λ(·)∈�

I (λ(·), τ ), τ ∈ �N. (11)

It is proved in works Kiseleva (1989), Kiseleva and Shor (1994) that for vec-
tor τ ∗ = (τ ∗

1 , . . . , τ
∗
N) from formulae (10) it is necessary to choose the optimal

solution of the outer problem from (9) that transforms it into the following form:

G(τ) = inf
τ∈�N

∫
�

min
i=1,2,... ,N

c(x, τi ) dx. (12)

So, to sum up, notice that the analytical expression for the first component λ∗(·) of
the optimal solution (λ∗(·), τ ∗) of the Problem B is obtained in the form (10) with
any fixed τ as an inner problem solution of infinite-dimensional optimization from
(9).

It should be observed that if c(x, τi ) is a Euclidean metric, then the optimal
solution of the inner problem from (9), that determined for any fixed τ ∈ �N ,
of the vector-valued function λ∗(x) = (λ∗

1(x), . . . , λ
∗
N(x)) by the formulae (10),

turns out to be the well-known Dirihle-Voronogo partitioning, Suharev (1989).
For finding the second component τ ∗ = (τ ∗

1 , . . . , τ
∗
N) of the optimal solution of

the Problem B it is necessary to solve the finite-dimensional problem (12). To solve
this problem we apply one of the versions of the method of the generalized gradient
descent with the space expansion in the direction of the difference of two sequential
generalized gradient vectors (so-called N.Z. Shor’s r-algorithm). This algorithm is
used, in general, for the determination of the local minima of the non-differentiable
multiextremal objective function G(τ) from (12).

We can find the detailed description of the different r-algorithm versions in
works by Mihalevich et al. (1986), and Shor (1985, 1998).

The essence of the methods of generalized gradient descent with the space ex-
pansion is based on construction of sequential linear operator approximations that
change the space metrics, and the choice of the descent direction corresponding to
the antigradient from a transformed space with a new metrics.

The r-algorithm iterated formula has the form Shor (1985):

τ k+1 = τ k − hkBτk+1[Bτk+1]T gG(τ k), k = 0, 1, 2 . . . , (13)

Here Bτk+1 is the operator from the transformed space to the base space EN (such
that Bτ0 = IN is the identity matrix), hk is the step multiplier, which can be determ-
ined from the minimum condition of functionG on the direction −Bk+1B

T
k+1gG(τ

k),
where gG(τ k) is the generalized gradient vector of the function G(τ) at the point
τ k.

In the present paper N.Z. Shor’s r-algorithm is utilized in the H -form (Mi-
halevich et al. 1986) (Hk is the symmetric matrix such that Hk = BkB

T
k ), so the

iterated formulae (13) take the form:

τ k+1 = τ k − hk Hk+1gG(τ
k)√

(Hk+1gG(τ k), gG(τ k))
, k = 0, 1, 2 . . . , (14)
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where

Hk+1 = Hk +
(

1

α2
k

− 1

)
Hk k 

T
k Hk

(Hk k, k)
,

 k = gG(τ k)− gG(τ k−1).

The coefficient of the space expansion αk = 3. Here we apply the adaptive control
method for the step multiplier hk described in Mihalevich et al. (1986) and Shor
(1985).

4. The Algorithm for Solving the Global Optimization Problem that is
Reduced to the Problem of Optimal Set Partitioning

Let us describe the algorithm for solving the global optimization problem (3) that
is reduced to the problem of optimal set partitioning (6)–(8) based on the method
from Section 3 of this paper.

Taking into account that x, τi from (6)–(8) are the points of n-dimensional
Euclidean space, i.e., x = (x(1), . . . , x(n)), τi = (τ (1)i , . . . , τ (n)i ) we can rewrite the
function c(x, τi ) in a form that is convenient for further examinations as follows:

c(x(1), . . . , x(n), τ
(1)
i , . . . , τ

(n)
i ) = f (τ (1)i , . . . , τ (n)i )+

+ S
k∑
j=1

max




0, f

(
x(1) + τ

(1)
i − x(1)
k

j, . . . , x(n) + τ
(n)
i − x(n)
k

j

)
−

−f
(
x(1) + τ

(1)
i − x(1)
k

(j − 1), . . . , x(n) + τ
(n)
i − x(n)
k

(j − 1)

)



(15)

To solve the problem (6)–(8), (15) we have to concretize the generalized gradi-
ent vector gτG(τ) from (13) of the function G(τ) from (12) at the point

τ = (τ (1)1 , . . . , τ
(n)

1 ; . . . ; τ (1)i , . . . , τ (p)i , . . . , τ (n)i ; . . . ; τ (1)N , . . . , τ (n)N ).
Note that the generalized gradient vector of the convex function coincides with

a subgradient vector. Otherwise the almost gradient vector is taken as a generalized
gradient vector (see Mihalevich et al., 1986; Shor, 1985, 1998).

The almost gradient vector coincides with the gradient vector at the point when
the function f (x) is differentiable. The almost gradient vector coincides with the
gradient vector at one of the adjoining to this point pieces in the case when the
function f (x) is a piecewise smooth (Mihalevich et al. 1986).

Thus, in most of the practical cases, there is no difficulty in the computation of
the generalized gradient vector.
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Let us define the ith component of the generalized gradient vector gτG(τ) =
(g
τ1
G (τ), . . . , g

τi
G(τ), . . . , g

τN
G (.τ)) of the function

G(τ
(1)
1 , ..., τ

(n)

1 ; . . . ; τ (1)i , ..., τ (p)i , ..., τ (n)i ; . . . ; τ (1)N , ..., τ (n)N ) =
=
∫
�

min
i=1,2,...,N

c(x(1), ..., x(n); . . . ; τ (1)i , ..., τ (n)i ) dx(1), ..., dx(n) (16)

at the point τ = (τ (1)1 , ..., τ
(n)
N ) as follows:

g
τi
G(τ) = gτiG(τ (1)1 , ..., τ

(n)
N ) =

=
∫
�

gτic (x
(1), ..., x(n); . . . ; τ (1)1 , ..., τ

(n)
N )λi(x

(1), ..., x(n)) dx(1), ..., dx(n),

(17)

where gτic (x, τ ) is the ith component of the n-dimensional generalized gradient
vector gτc (x, τ) of the function c(x, τi ) at the point τ = (τ1, ..., τi , ..., τN ) (here
τi = (τ (1)i , ..., τ (n)i )) with any fixed x has the form:

gτic (x
(1), ..., x(n); τ (1)1 , ..., τ

(n)
1 ; τ (1)i , ..., τ (p)i , ..., τ (n)i ; τ (1)N , ..., τ (n)N ) =

=




g
τ
(1)
i
c (x(1), ..., x(n); τ (1)1 , ..., τ

(n)
N )

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

g
τ
(p)
i
c (x(1), ..., x(n); τ (1)1 , ..., τ

(n)
N )

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

g
τ
(n)
i
c (x(1), ..., x(n); τ (1)1 , ..., τ

(n)
N )




The substantiation of Equation (17) can be found in Kiseleva (1989).

In turn, the pth component g
τ
(p)
i
c (x, τ ) of the generalized gradient vector of the

function c(x, τi ) at the point τ = (τ (1)1 , ..., τ
(n)
N ) with any fixed x = (x(1), ..., x(p),

..., x(n)) is defined for all i = 1, ..., N, and p = 1, . . . , n, by formulae:

g
τ
(p)
i
c (x(1), ..., x(n); . . . ; τ (1)1 , ..., τ

(n)
1 ; . . . ; τ (1)i , ..., τ (p)i , ..., τ (n)i ; . . . ; τ (1)N , ...,

τ
(n)
N ) = gτ

(p)
i

f (τ
(1)
1 , ..., τ

(p)

i , ..., τ
(n)
N )+ (18)

+ S




0, if f (u(1), ..., u(n))− f (v(1), ..., v(n)) � 0

k∑
j=1


 gu

(p)

f (u(1), ..., u(p), ..., u(n))
j

k
−

−gv(p)f (v(1), ..., v(p), ..., v(n))
j − 1

k


 ,

if f (u(1), ..., u(n))− f (v(1), ..., v(n)) > 0,
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where

u = (u(1), ..., u(p), ..., u(n)) =(
x(1) + τ

(1)
i − x(1)
k

j, ..., x(p) + τ
(p)

i − x(p)
k

j, ..., x(n) + τ
(n)
i − x(n)
k

j

)
;

v = (v(1), ..., v(p), ..., v(n)) =(
x(1) + τ

(1)
i − x(1)
k

(j − 1), ..., x(p) + τ
(p)

i − x(p)
k

(j − 1), ...,

x(n) + τ
(n)
i − x(n)
k

(j − 1)

)
.

For simplicity, let us describe the general scheme of the algorithm for one-
dimensional global optimization. The multi-dimensional case is substantially the
same. It differs basically just by replacement the one-dimensional integrals with
the multi-dimensional and by the specific definition of the formulae (5), (15) that
compute the penalty function c(x, τi ).

5. Algorithm for Searching for the Local Minima of the Function f (x) on
[a,b] and their Attraction Spheres

Step 0 (Initialization). Specify the values for parameters N and M; we cover the
segment [a, b] with a one-dimensional mesh xi = a + (i − 1)Hx, i = 1, ...,M,
where Hx is a step of the mesh, Hx = b− a/M − 1; we specify the initial approx-
imation τ 0 = (τ 0

1 , ..., τ
0
N); we use the formulae (10) with τ = τ 0 to compute the

vector-valued function λ0(x) = (λ0
1(x), ..., λ

0
N(x)) at the nodes of the mesh, that

characterize the initial partitioning of the segment [a, b] into attraction spheres
�0

1, ..., �
0
N of the local minima τ 0

1 , ..., τ
0
N , (see Figure 3a); we use the formulae

(17),(18) with λ(x) = λ0(x), τ = τ 0, n = 1, p = 1 to compute the values of the
generalized gradient vector gτG(τ) = (g

τ1
G (τ), . . . , g

τN
G (τ)); we choose the initial

sample step h0 > 0 for N.Z. Shor’s r-algorithm; set k = 0.
Step 1. We compute λk(x) at the nodes of the mesh using formulae (10) with
τ = τ k .
Step 2. We compute gτiG(τ), i = 1, . . . , N at the nodes of the mesh using formulae
(17),(18) with λ(x) = λk(x), τ = τ k.
Step 3. For minimizing the functionG(τ) from (16) on τ = (τ1, . . . , τN ) from �N

we perform the (k + 1)-st step of N.Z. Shor’s r-algorithm in H -form (Mihalevich
et al., 1986), whose short scheme has the form:

τ k+1 = P[a,b]

(
τ k − hk Hk+1gG(τ

k)√
(Hk+1gG(τ k), gG(τ k))

)
,
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where P[a,b] is the operator of projection on [a, b].
Step 4. If the condition∥∥τ k − τ k+1

∥∥ � ε, ε > 0 (19)

is not satisfied, then we set k = k+1 and pass to step 1 of the algorithm. Otherwise
we pass to step 5.
Step 5. We set τ ∗ = τp, λ∗(x) = λp(x), where p is the number of the itera-
tions for which the condition (19) has been satisfied. Thus we obtain the vec-
tor of local minimum coordinates τ ∗ = (τ ∗

1 , ..., τ
∗
N) and vector-valued function

λ∗(x) = (λ∗
1(x), ..., λ

∗
N(x)) that characterize the partitioning of the segment [a,b]

into attraction spheres �∗
1, ..., �

∗
N of these local minima.

Step 6. We compute the value of the original function at the local minimum points
τ ∗

1 , ..., τ
∗
N and choose the point of the global minimum x∗ : f (x∗) = min{f (τ ∗

1 ), ...,

f (τ ∗
N)} among them.
This completes the description of algorithm.

6. The Efficiency Estimate and the Properties Revelation of the Described
Algorithm

To estimate the efficiency of the algorithm and to show its properties the algorithm
is evaluated on a set of test problems in one-, two- and three-dimensional cases
taken from Batishev (1981), Himmelblau (1975), Zilinskas (1989), Zilinskas and
Shaltianis (1989), Strongin (1978), Suharev (1981), Floudas (2000).

One-dimensional case:
(1) Himmelblau (1975).

f1(x) = (x2 − 1)
2
, −2 � x � 2.

(2) Himmelblau (1975).

f2(x) = x · sin x, −7.85 � x � 7.85.

(3) Authors choice.

f3(x) = |x| + |x − 1| − 1, −2 � x � 2.

(4) Strongin (1978), Zilinskas (1986), Zilinskas and Shaltyanis (1991).

f4(x) = sin x + sin(10x/3) + ln x − 0.84x + 3, 3 � x � 7.5.

(5) Strongin (1978).

f5(x) = 2 − cos x − cos(2x), −1.5 � x � 4.5.
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(6) Suharev (1981).

f6(x) = sin(1/x), 0 � x � 1.

(7) Himmelblau (1975).

f7(x) = (1 − x)2 · (x + 1)4 · (x − 2)3 · x, −2 � x � 2.

(8) Zilinskas (1986).

f8(x) = sin x + sin(2x/3), 3.1 � x � 20.4.

(9) Zilinskas (1986).

f9(x) = 2(x − 0.75)2 + sin(8πx − π/2)− 0.125,

0 � x � 1, − 2 � x � 2.

(10) Suharev (1981), Zilinskas (1986).

f10(x) = −
5∑
i=1

i sin((i + 1)x + i), −10 � x � 10.

(11) Zilinskas (1986), Zilinskas and Shaltyanis (1989).

f11(x) = (x + sin x) · exp(−x2), −10 � x � 10.

(12) Zilinskas (1986).

f12(x) = sin(x), 0 � x � 50, 0 � x � 100, 0 � x � 20.

Two-dimensional case:
(13) Suharev (1981).

f13(x, y) = x4 + 4x3 + 4x2 + y2, −3 � x � 1, −2 � y � 2.

(14) Himmelblau (1975).

f14(x, y) = (x2 + y − 11)
2 + (x + y2 − 7)

2
, −2 � x � 4, −2 � y � 4.

(15) Batyshev (1975), Himmelblau (1975), Suharev (1981).

f15(x, y) = −
(

1 + 8x − 7x2 + 7

3
x3 − 1

4
x4

)
· y2 · e−y,

0 � x � 4.2, 0 � y � 6.4.
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(16) Zilinskas (1986).

f16(x, y) = a(y − bx2 + cx − d)2 + l(1 − f ) · cos x + l,
−5 � x � 10, 0 � y � 15,

a = 1b = 5.1

4 · 3.141592
c = 5

3.14159
d = 6l = 10f = 1

8 · 3.14159
.

(17) Floudas (2000).

f17(x, y) = cos x sin y − x

y2 + 1
, −1 � x � 2, −1 � y � 1.

Three-dimensional case:
(18) Himmelblau (1975).

f18(x, y, z) = x2 + y2 + z2, x, y, z ∈ [−0.5; 0.5].
(19) Zilinskas (1986) (n = 3,m = 4).

f19(x, y, z) = − e−3(x−0.3689)2−10(y−0.117)2−30(z−0.2673)2 −
− 1.2e−0.1(x−0.4699)2−10(y−0.4387)2−35(z−0.747)2 −
− 3e−3(x−0.1091)2−10(y−0.8732)2−30(z−0.5547)2 −
− 3.2e−0.1(x−0.03815)2−10(y−0.5743)2−35(z−0.8828)2,

x, y, z ∈ [0; 1]
The results of the numerical experiments with one-dimensional case are given in

Table 1, with two-dimensional case are given in Table 2, and with three-dimensional
case are given in Table 3.

As seen from Table 1, to implement the algorithm, the user has to set the
following parameters.
1. N : a true number of local minima of the function f (x) on [a, b] in the case when

the user knows it. In the case when the Ntrue is unknown then we specify Nexp .

– an expected (by user) number of local minima (Nexp . – an initial estimation of
a number of local minima);

2. M: the number of nodes in the mesh, covering the segment [a, b];
3. K: a natural number, which characterizing the number of subdivisions of the

segment [x, τi ], for computing the value of c(x, τi );
4. τ 0 = (τ 0

1 , ..., τ
0
N): an initial approximation for the local minima of the function

f (x) on [a, b];
5. ε: convergence tolerance of N.Z. Shor’s r-algorithm for the calculation of the

local minimum coordinates (see algorithm, step 4).
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Notice that the parameter h0, the initial sample step for N.Z. Shor’s r-algorithm,
as a rule, equals to 1. It is recommended to reduce h0 for the segments, which have
lengths not more than 1.

It should be noted that the user can regulate one more parameter, S, the penalty
coefficient in the expression for c(x, τi ). It is recommended to choose the value
of S as a sufficiently large positive number, commensurable with the values of
the function f (x) and the other parameters. It is explained by the opportunity of
the accidental r-algorithm stopping, because of overfilling, when S has a very large
value. But when S has a small value, the exit of the point x from the local minimum
attraction sphere is not penalized.

The parameters h0 and S are not in the list of the fundamental algorithm para-
meters, as they may be given in the computer program automatically. Then there
must be provided an automatic choice in a case of the accidental r-algorithm
stopping.

Thus, to examine the properties of described algorithm we begin with minimiz-
ing the function f9(x) on [0; 1]. The graph of this function with i − 1 = 1, i = 2,
i+1 = 3 is presented in Figure 2. This function has three local minima τ ∗

1 = 0.25,
τ ∗

2 = 0.5, τ ∗
3 = 0.75.

The case corresponding to the 1-st experiment of the 9a series, given in Table 1
(the user specified Nexp . value coincides with Ntrue = 3) is presented in Figure 3b.
Here are the initial approximations of the local minima τ 0

1 = 0.2, τ 0
2 = 0.6, τ 0

3 =
0.65 and their attraction spheres �0

1,�
0
2,�

0
3 correspondingly.

Figure 3a shows the optimal partitioning the set � into the attraction spheres
�∗

1,�
∗
2,�

∗
3 of the local minima τ ∗

1 = 0.25, τ ∗
2 = 0.5, τ ∗

3 = 0.75, obtained by
algorithm (withM = 5,K = 5).

Figure 4 corresponds to the second experiment of the 9a series. Here the user
set value Nexp . equal to 4 that is greater than the true number Ntrue = 3. In this
case the algorithm started from different initial local minimum points τ 0

1 = 0.2,
τ 0

2 = 0.4, τ 0
3 = 0.6,τ 0

4 = 0.8 attained the optimal solution presented in Figure 3a.
In the third experiment of the 9a series with Nexp . = 4, even though the al-

gorithm was started from one initial point τ 0
1 = τ 0

2 = τ 0
3 = τ 0

4 = 0.4 it found three
true local minima correctly (Ntrue = 3) as shown in Figure 3a .

In the fourth experiment of the 9a series with Nexp . = 5, algorithm started from
initial approximation τ 0

1 = 0.2, τ 0
2 = 0.3, τ 0

3 = 0.4, τ 0
4 = 0.6, τ 0

5 = 0.8 found
three true local minima also correctly (see Figure 3a).

In the 5-th experiment of the 9a series the Nexp . has the value less than Ntrue,
i.e., Nexp . = 2. The algorithm missed one local minimum τ ∗

2 = 0.5 (see Figure 5)
but the other 2 local minima were found correctly: τ ∗

1 = 0.25, τ ∗
3 = 0.75.

Thus, we can make a conclusion that to implement the algorithm it is not com-
pulsory to know the true number of the local minima (Ntrue). It is enough to select
Nexp . > Ntrue. In this case, algorithm finds all Ntrue local minima. If, nevertheless,
Nexp . < Ntrue, then some local minima will be missed and the other ones will be
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Figure 4. Plot of the penalty functions of minimizing the f9(x) at the initial solution:
Nexp . = 4.

found correctly. In such a case the experiment should be repeated several times
with increasing values of Nexp ..

The same effect of implementation the algorithm is observed for the three-
dimensional function f18(x) (see Table 3 with Nexp . = 3 and Nexp . = 4, the
algorithm leads to the Ntrue = 1), as well as for lots of the two-dimensional
functions from Table 2.

There is no difficulty with implementation the algorithm for searching for the
eight local minima of the function f12(x) on [0;50] (see Table 1, experiment 12),
and also the 17 local minima of the function f9(x) on [−2; 2] (see Table 1, experi-
ment 9c; the graph of this function is presented in Figure 6).

We have performed a number of successful experiments with the function f12(x)

that has 33 local minima on segment [0;200] and of the function f9(x) that has 33
local minima on segment [−4; 4].

Choice of the parametersM andK, generally speaking, depends on a type of the
function f (x). For more smooth functions, theM andK values may be chosen with
less values, especially, if an initial approximation for τ is given successfully, for
example, uniformly distributed on [a, b]: (see Table 1, f1(x), the 1-st experiment,
here M = 2,K = 3 and Table 1, f9(x), 9a series: the 2-d experiment, here M =
5,K = 6).
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Figure 5. Plot of the penalty functions of minimizing the f9(x) at the optimal solution:
Nexp . = 2.

If the initial approximation of the local minima is bad, for example, all τ 0
i ,

i = 1, ..., N , set at the same point, then M and (or) K should be increased (see
Table 1, f1(x), 2-d experiment, here M and K values are increased in comparison
with the 1-st experiment, M = 10, K = 10). We can see the same for function
f9(x) (see Table 1, the 9a series: experiment 3). Here the parameter K value is
increased and equal 30 in comparison with the experiment 2 when K = 6.

Besides, if the initial approximation of the local minima is chosen poorly then
some local minima can be missed. For example, the function f9(x) has 17 local
minima on the admissible domain [−2; 2] (see Figure 6). When we determine eight
initial approximations for τ 0

i instead of 17 (see Table 1, f9(x), experiment 9b) the
algorithm found only 11 local minima and the rest are missed. If we specify an
initial approximation τ 0

i uniformly distributed (see Table 1, f9(x), experiment 9c),
all local minima are found. Let us notice that in the first case with non-uniformly
distributed initial approximation for the local minima parameters M and K values
are increased and essentially increase the CPU time (M = 40,K = 50, CPU time
= 140.07 s). Then in the second case M = 30,K = 20, CPU time = 25.10 s.

The above observations were also observed in the minimization of the function
f6(x) (see Figure 7) that has three non-uniformly distributed local minima on seg-
ment [a, b] = [0.05; 1]. Naturally, the M and K values are increased: M = 35,
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Figure 6. Plot of the minimized function f9(x) on [−2; 2].

K = 20 (see Table 1, f6(x), experiment 1). Algorithm finds all local minima with
CPU time = 4 s.

Note that the results of algorithm give us extra information about the locations
of local maxima and saddle points of the examined function. So, for example, for
function f9(x), see Figure 2, the points that are situated at the optimal bounds of the
attraction spheres �∗

i−1,�∗
i and attraction spheres �∗

i ,�
∗
i+1 are the local maximum

points of this function. (The optimal set partitioning method from Section 3 of
this paper has the possibilities to find the points which are situated at the optimal
bounds between subsets �∗

i and �∗
j , i, j = 1, ..., N (see Kiseleva, 1985).

At last, it follows from the numerous publications on the global optimization
(for example, Ziglyavsliy and Zilinskas, 1991; Zilinskas, 1986) that for many well-
known algorithms there are difficulties with the plane part of the hyper-surface that
is determined by the minimized function (the so-called the Plateau problem). In the
present paper algorithm is applied for minimization of the function f3(x) that has
such a feature (see Figure 8). For algorithm there is no difficulty with the Plateau
problem (see Table 1, f3(x), experiment 1, 2, 3).

By taking Nexp . equal to 3, 2, 1 we received Ntrue = 1 and one global minimum
point from the optimal solution set [0; 1].

So in 1-st experiment with Nexp . = 3 even started from one initial point τ 0
1 =

τ 0
2 = τ 0

3 = −2 the algorithm finds 1 true local minimum (Ntrue = 1): τ ∗
1 =

0.0002019 (hereM = 2,K = 2).
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Figure 7. Plot of the minimized function f6(x).

Figure 8. Plot of the minimized function f3(x).

In 2-d experiment with uniformly distributed initial approximation for local
minima τ 0

1 = −2, τ 0
2 = −1, τ 0

3 = −1.6 algorithm also finds 1 true local minimum:
τ ∗

1 = 0.0000291 (here Nexp . = 3,M = 3, k = 2).
In the third experiment with Nexp . = 2, the algorithm started from the initial

approximation τ 0
1 = −2, τ 0

2 = 0.4, finds 1 true local minimum: τ ∗
1 = 0.0004419

(hereM = 3, K = 2).
In the fourth experiment even when Nexp . = 1, algorithm finds 1 true local

minimum correctly: τ ∗
1 = −0.0000391, τ 0

1 = −2 withM = 3, K = 2.
The graphs of the penalty functions at the initial approximation τ 0

1 = −1, τ 0
2 =

1.6 are shown in Figure 9.
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Figure 9. Plot of the penalty functions of minimizing the f3(x) at the initial solution.

The examined algorithm has been coded using Fortran 7.0. The Fortran code
has been compiled with Fortran-IV Compiler. All computations for the mentioned
set of the test functions have been carried out on a Pentium II PC.

7. Summary

Thus, in conclusion, let us list the main characteristics of the examined algorithm.

1. Under a suitable choice of the basic parameters N,M,K, algorithm for wide
class of non-differentiable functions finds simultaneously all local minima, in-
cluding the global one, their attraction spheres and also the true number of the
local minima Ntrue.

2. The algorithm shows its worth in minimizing the function with a Plateau prob-
lem.

3. It is not necessary to know the true number of the local minima (Ntrue). It is
enough to select Nexp . > Ntrue. In this case, the algorithm finds all Ntrue local
minima. If, nevertheless, Nexp . < Ntrue, then some local minima will be missed
and the other ones will be found correctly. In such a case the experiment should
be repeated with increasing values of Nexp . until the Ntrue has been determined.

4. It is recommended that the initial approximation for local minima τ 0
i , i =

1, ..., N , is distributed uniformly on [a, b] or is chosen by means of the random
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number generator, if there is no a priori information about the values of the local
minima. If all the values for the initial approximation are at the same point, then
the parameters M, K must be adjusted in order not to miss some local minima.

5. The recommendations for choosing the M, K parameters demand further cor-
rection. The user-algorithm interaction gives us the possibility of correction of
these parameters during the process of solving the problem.
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